Published on Sun Feb 25 2018

Functional Gradient Boosting based on Residual Network Perception

Atsushi Nitanda, Taiji Suzuki

Residual Networks (ResNets) have become state-of-the-art models in deep learning. We formalize the gradient boosting perspective of ResNet mathematically. We propose a new method called ResFGB for classification tasks by leveraging ResNet perception.

0
0
0
Abstract

Residual Networks (ResNets) have become state-of-the-art models in deep learning and several theoretical studies have been devoted to understanding why ResNet works so well. One attractive viewpoint on ResNet is that it is optimizing the risk in a functional space by combining an ensemble of effective features. In this paper, we adopt this viewpoint to construct a new gradient boosting method, which is known to be very powerful in data analysis. To do so, we formalize the gradient boosting perspective of ResNet mathematically using the notion of functional gradients and propose a new method called ResFGB for classification tasks by leveraging ResNet perception. Two types of generalization guarantees are provided from the optimization perspective: one is the margin bound and the other is the expected risk bound by the sample-splitting technique. Experimental results show superior performance of the proposed method over state-of-the-art methods such as LightGBM.