Published on Thu Dec 30 2021

Modeling and Forecasting Intraday Market Returns: a Machine Learning Approach

See More ...

In this paper we examine the relation between market returns and volatility measures through machine learning methods in a high-frequency environment. We implement a minute-by-minute rolling window intraday estimation method using two nonlinear models: Long-Short-Term Memory (LSTM) neural networks and Random Forests (RF). Our estimations show that the CBOE Volatility Index (VIX) is the strongest candidate predictor for intraday market returns in our analysis, specially when implemented through the LSTM model. This model also improves significantly the performance of the lagged market return as predictive variable. Finally, intraday RF estimation outputs indicate that there is no performance improvement with this method, and it may even worsen the results in some cases.

3
17
80