Published on Thu Jun 16 2016

SQuAD: 100,000+ Questions for Machine Comprehension of Text

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, Percy Liang

The Stanford Question Answering Dataset (SQuAD) consists of 100,000+ questions posed by crowdworkers on Wikipedia. The answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the

1
0
0
Abstract

We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at https://stanford-qa.com