Published on Mon Jan 17 2022

A spectral survey of CH3CCH in the Hot Molecular Core G331.512-0.103

See More ...

A spectral survey of methyl acetylene (CH3CCH) was conducted toward the hot molecular core/outflow G331.512-0.103. Our APEX observations allowed the detection of 41 uncontaminated rotational lines of CH3CCH in the frequency range between 172-356 GHz. Through an analysis under the local thermodynamic equilibrium assumption, by means of rotational diagrams, we determined Texc = 50 pm 1 K, N(CH3CCH) = (7.5 pm 0.4) x 10^{15} cm^{-2}, XCH3CCH/H2 ~ (0.8-2.8) x 10^{-8} and XCH3CCH/CH3OH ~ 0.42 pm 0.05 for an extended emitting region (~10 arcsec). The relative intensities of the K=2 and K=3 lines within a given K-ladder are strongly negatively correlated to the transitions' upper J quantum-number (r=-0.84). Pure rotational spectra of CH3CCH were simulated at different temperatures, in order to interpret this observation. The results indicate that the emission is characterized by a non-negligible temperature gradient with upper and lower limits of ~45 and ~60 K, respectively. Moreover, the line widths and peak velocities show an overall strong correlation with their rest frequencies, suggesting that the warmer gas is also associated with stronger turbulence effects. The K=0 transitions present a slightly different kinematic signature than the remaining lines, indicating that they might be tracing a different gas component. We speculate that this component is characterized by lower temperatures, and therefore larger sizes. Moreover, we predict and discuss the temporal evolution of the CH3CCH abundance using a two-stage zero-dimensional model of the source constructed with the three-phase Nautilus gas-grain code.