Published on Wed Nov 18 2015

Penalized complexity priors for degrees of freedom in Bayesian P-splines

See More ...
Bayesian P-splines assume an intrinsic Gaussian Markov random field prior on the spline coefficients, conditional on a precision hyper-parameter $\tau$. Prior elicitation of $\tau$ is difficult. To overcome this issue we aim to building priors on an interpretable property of the model, indicating the complexity of the smooth function to be estimated. Following this idea, we propose Penalized Complexity (PC) priors for the number of effective degrees of freedom. We present the general ideas behind the construction of these new PC priors, describe their properties and show how to implement them in P-splines for Gaussian data.