Published on Thu Jul 29 2021

What Does TERRA-REF's High Resolution, Multi Sensor Plant Sensing Public Domain Data Offer the Computer Vision Community?

David LeBauer, Max Burnette, Noah Fahlgren, Rob Kooper, Kenton McHenry, Abby Stylianou

The system includes a stereo camera, a 3D camera, and a laser scanner. The data will be used to train new models of plant life. The system will be available to the public for two years.

0
0
0
Abstract

A core objective of the TERRA-REF project was to generate an open-access reference dataset for the study of evaluation of sensing technology to study plants under field conditions. The TERRA-REF program deployed a suite of high resolution, cutting edge technology sensors on a gantry system with the aim of scanning 1 hectare (~$10^4$ m) at around $1 mm^2$ spatial resolution multiple times per week. The system contains co-located sensors including a stereo-pair RGB camera, a thermal imager, a laser scanner to capture 3D structure, and two hyperspectral cameras covering wavelengths of 300-2500nm. This sensor data is provided alongside over sixty types of traditional plant measurements that can be used to train new machine learning models. Associated weather and environmental measurements, information about agronomic management and experimental design, and the genomic sequences of hundreds of plant varieties have been collected and are available alongside the sensor and plant trait (phenotype) data. Over the course of four years and ten growing seasons, the TERRA-REF system generated over 1 PB of sensor data and almost 45 million files. The subset that has been released to the public domain accounts for two seasons and about half of the total data volume. This provides an unprecedented opportunity for investigations far beyond the core biological scope of the project. This focus of this paper is to provide the Computer Vision and Machine Learning communities an overview of the available data and some potential applications of this one of a kind data.