Published on Tue Apr 20 2021

Decoding the shift-invariant data: applications for band-excitation scanning probe microscopy

Yongtao Liu, Rama K. Vasudevan, Kyle Kelley, Dohyung Kim, Yogesh Sharma, Mahshid Ahmadi, Sergei V. Kalinin, Maxim Ziatdinov
0
0
0
Abstract

A shift-invariant variational autoencoder (shift-VAE) is developed as an unsupervised method for the analysis of spectral data in the presence of shifts along the parameter axis, disentangling the physically-relevant shifts from other latent variables. Using synthetic data sets, we show that the shift-VAE latent variables closely match the ground truth parameters. The shift VAE is extended towards the analysis of band-excitation piezoresponse force microscopy (BE-PFM) data, disentangling the resonance frequency shifts from the peak shape parameters in a model-free unsupervised manner. The extensions of this approach towards denoising of data and model-free dimensionality reduction in imaging and spectroscopic data are further demonstrated. This approach is universal and can also be extended to analysis of X-ray diffraction, photoluminescence, Raman spectra, and other data sets.