Published on Tue Dec 15 2020

On the Importance of Diversity in Re-Sampling for Imbalanced Data and Rare Events in Mortality Risk Models

Yuxuan, Yang, Hadi Akbarzadeh Khorshidi, Uwe Aickelin, Aditi Nevgi, Elif Ekinci

Surgical risk increases significantly when patients present with comorbid conditions. The Surgical Outcome Risk Tool (SORT) is one of the tools developed to predict mortality risk throughout the entire perioperative period for major elective in-patient surgeries in the UK.

0
0
0
Abstract

Surgical risk increases significantly when patients present with comorbid conditions. This has resulted in the creation of numerous risk stratification tools with the objective of formulating associated surgical risk to assist both surgeons and patients in decision-making. The Surgical Outcome Risk Tool (SORT) is one of the tools developed to predict mortality risk throughout the entire perioperative period for major elective in-patient surgeries in the UK. In this study, we enhance the original SORT prediction model (UK SORT) by addressing the class imbalance within the dataset. Our proposed method investigates the application of diversity-based selection on top of common re-sampling techniques to enhance the classifier's capability in detecting minority (mortality) events. Diversity amongst training datasets is an essential factor in ensuring re-sampled data keeps an accurate depiction of the minority/majority class region, thereby solving the generalization problem of mainstream sampling approaches. We incorporate the use of the Solow-Polasky measure as a drop-in functionality to evaluate diversity, with the addition of greedy algorithms to identify and discard subsets that share the most similarity. Additionally, through empirical experiments, we prove that the performance of the classifier trained over diversity-based dataset outperforms the original classifier over ten external datasets. Our diversity-based re-sampling method elevates the performance of the UK SORT algorithm by 1.4$.