Published on Tue Mar 10 2020

A Compact Spectral Descriptor for Shape Deformations

Skylar Sible, Rodrigo Iza-Teran, Jochen Garcke, Nikola Aulig, Patricia Wollstadt

The proposed descriptor provides a novel approach to the parametrization of geometric deformation behavior. It enables the use of state-of-the-art data analysis techniques such as machine learning to engineering tasks concerned with plastic behaviors.

0
0
0
Abstract

Modern product design in the engineering domain is increasingly driven by computational analysis including finite-element based simulation, computational optimization, and modern data analysis techniques such as machine learning. To apply these methods, suitable data representations for components under development as well as for related design criteria have to be found. While a component's geometry is typically represented by a polygon surface mesh, it is often not clear how to parametrize critical design properties in order to enable efficient computational analysis. In the present work, we propose a novel methodology to obtain a parameterization of a component's plastic deformation behavior under stress, which is an important design criterion in many application domains, for example, when optimizing the crash behavior in the automotive context. Existing parameterizations limit computational analysis to relatively simple deformations and typically require extensive input by an expert, making the design process time intensive and costly. Hence, we propose a way to derive a compact descriptor of deformation behavior that is based on spectral mesh processing and enables a low-dimensional representation of also complex deformations.We demonstrate the descriptor's ability to represent relevant deformation behavior by applying it in a nearest-neighbor search to identify similar simulation results in a filtering task. The proposed descriptor provides a novel approach to the parametrization of geometric deformation behavior and enables the use of state-of-the-art data analysis techniques such as machine learning to engineering tasks concerned with plastic deformation behavior.

Thu Oct 25 2018
Machine Learning
Efficient Load Sampling for Worst-Case Structural Analysis Under Force Location Uncertainty
An important task in structural design is to quantify the structural performance of an object under external forces. The problem proves to be computationally very challenging as the external forces' contact locations and magnitudes may exhibit significant variations. We present an efficient analysis approach to determine the most critical force contact location.
0
0
0
Tue Jul 28 2015
Computer Vision
A Hyperelastic Two-Scale Optimization Model for Shape Matching
We suggest a novel shape matching algorithm for three-dimensional surface. The method is based on the physical theory of nonlinear elasticity.
0
0
0
Thu Aug 29 2019
Machine Learning
Modeling and Optimization with Gaussian Processes in Reduced Eigenbases -- Extended Version
Parametric shape optimization aims at minimizing an objective function f(x) where x are CAD parameters. Most often, the set of all considered CAD shapes resides in a manifold of lower effective dimension. In this work, we uncover the manifold through a high-dimensional shape mapping and build a new
0
0
0
Mon Jun 01 2020
Machine Learning
METASET: Exploring Shape and Property Spaces for Data-Driven Metamaterials Design
Data-driven design of mechanical metamaterials is an increasingly popular method to combat costly physical simulations. An imbalanced dataset containing more of certain shapes or physical properties can be detrimental to the efficacy of data-driven approaches. We propose METASET, a methodology that uses similarity metrics and positive semi-definite
0
0
0
Fri Dec 01 2017
Computer Vision
Shape Complementarity Analysis for Objects of Arbitrary Shape
The basic problem of shape complementarity analysis appears fundamental to applications as diverse as mechanical design, assembly automation, robot motion planning, micro- and nano-fabrication, protein-ligand binding, and rational drug design. The current challenge lies in the lack of a general mathematical
0
0
0
Wed Jun 03 2015
Machine Learning
Bayesian optimization for materials design
Bayesian optimization guides the choice of experiments during materials design and discovery to find good material designs. Bayesian optimization is built on a statistical technique called Gaussian process regression.
0
0
0