Published on Tue Jun 01 2021

Computing Least and Greatest Fixed Points in Absorptive Semirings

See More ...

We present two methods to algorithmically compute both least and greatest solutions of polynomial equation systems over absorptive semirings (with certain completeness and continuity assumptions), such as the tropical semiring. Both methods require a polynomial number of semiring operations, including semiring addition, multiplication and an infinitary power operation. Our main result is a closed-form solution for least and greatest fixed points based on the fixed-point iteration. The proof builds on the notion of (possibly infinite) derivation trees; a careful analysis of the shape of these trees allows us to collapse the fixed-point iteration to a linear number of steps. The second method is an iterative symbolic computation in the semiring of generalized absorptive polynomials, largely based on results on Kleene algebras.